Post by ShrimpBrime on Jul 31, 2019 21:55:16 GMT -5
The Nanosheet Transistor Is the Next (and Maybe Last) Step in Moore’s Law
-
Quote: spectrum.ieee.org/semiconductors/devices/the-nanosheet-transistor-is-the-next-and-maybe-last-step-in-moores-law
Right now, 7 nm is the cutting edge, but Samsung and TSMC announced in April that they were beginning the move to the next node, 5 nm. Samsung had some additional news: It has decided that the kind of transistor the industry had been using for nearly a decade has run its course. For the following node, 3 nm, which should begin limited manufacture around 2020, it is working on a completely new design.
That transistor design goes by a variety of names—gate-all-around, multibridge channel, nanobeam—but in research circles we’ve been calling it the nanosheet. The name isn’t very important. What is important is that this design isn’t just the next transistor for logic chips; it might be the last. There will surely be variations on the theme, but from here on, it’s probably all about nanosheets.
Quote: ieeexplore.ieee.org/document/7998183
Abstract:
In this paper, for the first time we demonstrate that horizontally stacked gate-all-around (GAA) Nanosheet structure is a good candidate for the replacement of FinFET at the 5nm technology node and beyond. It offers increased Weff per active footprint and better performance compared to FinFET, and with a less complex patterning strategy, leveraging EUV lithography. Good electrostatics are reported at Lg=12nm and aggressive 44/48nm CPP (Contacted Poly Pitch) ground rules. We demonstrate work function metal (WFM) replacement and multiple threshold voltages, compatible with aggressive sheet to sheet spacing for wide stacked sheets. Stiction of sheets in long-channel devices is eliminated. Dielectric isolation is shown on standard bulk substrate for sub-sheet leakage control. Wrap-around contact (WAC) is evaluated for extrinsic resistance reduction.
Quote: spectrum.ieee.org/semiconductors/devices/the-nanosheet-transistor-is-the-next-and-maybe-last-step-in-moores-law
Right now, 7 nm is the cutting edge, but Samsung and TSMC announced in April that they were beginning the move to the next node, 5 nm. Samsung had some additional news: It has decided that the kind of transistor the industry had been using for nearly a decade has run its course. For the following node, 3 nm, which should begin limited manufacture around 2020, it is working on a completely new design.
That transistor design goes by a variety of names—gate-all-around, multibridge channel, nanobeam—but in research circles we’ve been calling it the nanosheet. The name isn’t very important. What is important is that this design isn’t just the next transistor for logic chips; it might be the last. There will surely be variations on the theme, but from here on, it’s probably all about nanosheets.
Quote: ieeexplore.ieee.org/document/7998183
Abstract:
In this paper, for the first time we demonstrate that horizontally stacked gate-all-around (GAA) Nanosheet structure is a good candidate for the replacement of FinFET at the 5nm technology node and beyond. It offers increased Weff per active footprint and better performance compared to FinFET, and with a less complex patterning strategy, leveraging EUV lithography. Good electrostatics are reported at Lg=12nm and aggressive 44/48nm CPP (Contacted Poly Pitch) ground rules. We demonstrate work function metal (WFM) replacement and multiple threshold voltages, compatible with aggressive sheet to sheet spacing for wide stacked sheets. Stiction of sheets in long-channel devices is eliminated. Dielectric isolation is shown on standard bulk substrate for sub-sheet leakage control. Wrap-around contact (WAC) is evaluated for extrinsic resistance reduction.